Injectable thermosensitive gels for the localized and controlled delivery of biomolecules in tissue engineering/regenerative medicine

Submitted: 26 March 2019
Accepted: 15 May 2019
Published: 9 July 2019
Abstract Views: 855
PDF: 568
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The characteristic poor stability and high fluid permeability of Poloxamer®- based gels have severely limited their biomedical application. In this work, Poloxamer 407 was used as building block to synthesize a poly(ether urethane) (PEU), which aqueous solutions formed gels with improved stability and mechanics compared to Poloxamer itself. PEU chains formed micelles in aqueous solution (diameter ~40 nm at 25°C) and systems with PEU content higher than 5±1% w/v underwent a temperature- driven gelation. Gel properties were tuned acting on PEU concentration in the starting solutions, with compositions within the range 8-18% w/v showing high potential for biomedical applications (gelation at 37°C within 3-10 minutes, residence time from few days to many weeks, injectability). Model proteins (bovine serum albumin, horseradish peroxidase) were encapsulated in mild conditions and their release was modulated by gel composition (on day 3, approx. 85, 65 and 55% of encapsulated payload released from gels with 8, 15 and 18% w/v concentration). Released peroxidase retained approx. 30-40% of its activity up to 2 days, a key aspect for biomolecules in the drug delivery field.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Supporting Agencies

Project PREVISION Prognostic evaluation of the use of three-dimensional bioactive scaffolds and injectable gels for the treatment of chronic lesions of the skin by means of new biomedical imaging technologies financed by Fondazione Pisa (Italy)

How to Cite

Boffito, M., Grivet Brancot, A., Lima, O., Bronco, S., Sartori, S., & Ciardelli, G. (2019). Injectable thermosensitive gels for the localized and controlled delivery of biomolecules in tissue engineering/regenerative medicine. Biomedical Science and Engineering, 1(1). https://doi.org/10.4081/bse.67

Most read articles by the same author(s)