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Abstract
The exploration of bone repair materials

has been continuously carried out. After
several decades of development, bone
repair materials have experienced from tra-
ditional ceramics, metals and polymers to
modern smart hydrogels and multifunction-
al composite materials, etc. At the same
time of designing and preparing the novel
materials, more and more attention has been
paid to their osteogenesis mechanism and
immune response. The development of next
generation of bone repair materials requires
the comprehensive consideration of a com-
bination of many related factors. This arti-
cle reviews the research status and the
progress of bone repair materials from the
three aspects, current most-used types,
bioactive mechanism and updated related
investigations. Finally, several research
points that are crucial for the further devel-
opment of bone repairs are proposed in the
conclusion and perspectives part.

Introduction
Bone defects beyond critical-size due to

the injury, tumor or osteomyelitis, which
affect revascularization and tissue regenera-
tion directly, may not be repaired without
external interventions. Nearly 4 million
bone fractures happened in US in 2013. Due
to the ageing population, by 2025, the glob-
al costs of osteoporotic fracture are expect-
ed to increase by 25%.1 Another statistics
states that in 2015, around 7 million people
in America underwent total hip or knee
replacement.2 Bone repair materials have
huge market prospect.

Among all bone substitutions, autolo-
gous bone grafts are still considered as the
gold standard, but the size and source limit

its application, as well as the risk of infec-
tion and ongoing unendurable pain after a
second surgery at the donor site. Allograft is
an alternative to autografts, but it may be
immunogenic or have the risk of viral trans-
mission, which can lead to a high failure
rate. On this occasion, available natural
bone grafts are far from satisfying the clini-
cal requirements.

Based on these facts, ceramics, synthetic
or natural polymer materials, metals etc. are
commonly used as bone repair materials with
large supplement and less or free immuno-
genicity. They may not only provide structur-
al support, but also have a promoting effect
on bone regeneration, which is effective to
repair large bone defects. It was suggested
that bone repair materials should have the
ability to promote osteogenic differentiation
of hMSCS or the proliferation of
osteoblasts,3 and ideal scaffolds for bone tis-
sue engineering needed to have interconnect-
ed pores, appropriate porosity as well as suit-
able mechanical properties. Some studies
emphasized on the ability to induce and sup-
port angiogenesis.4 A suitable pore size was
necessary for blood vessel growth, transport
of nutrients and metabolic waste.

This review outlines the current types of
bone repair materials, from the ceramic,
metal and polymer materials, carbon mate-
rials, to the smart hydrogels, multifunction-
al composite materials and natural biologi-
cal material etc., bioactive mechanisms
involved and recent investigations, includ-
ing functional improvements and immuno-
logical researches. Finally, this review
analyses the future developments of bone
repair materials.

Current materials and their
applications

At present, there are many types of bone
repair materials, such as bioceramics, met-
als, polymers and composites. Besides, car-
bon materials are also widely used.
Currently, smart hydrogels, metal ions
doped composites and natural biomaterials
etc. have been well developed. Some of
these have made remarkable achievements
in animal models or clinical researches.

Conventional materials

Bioceramics and bioactive glasses
Calcium phosphates (CAPs) and bioac-

tive glasses are commonly used as bone
repair materials. CAPs, including hydroxya-
patite (HA), tricalcium phosphate (TCP) and

biphasic calcium phosphate (BCP), have
good biocompatibility and osteogenic activi-
ty.5 It had been shown that the CAPs could
form strong chemistry bonds with surround-
ing bone and promote osseointegration.6-8

HA is similar with the main component
of natural bone,9 and can bond with natural
bones in body. With good osteogenic activ-
ity, it had been used as bone repair materials
before century 21.10 The surfaces of HA can
not only provide nucleating sites for the
precipitation of apatite crystals in culture
medium,11,12 but also accelerate apatite
growth.13 A study showed that HA could be
slowly degraded by simple dissolution or by
osteoclastic bone remodeling effect.14

However, with low breaking strength and
high brittleness, it may be unsuitable to be
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directly used in large-scale bone defect
repair. Fortunately, with better bioactivity
and higher mechanical strength, nano-HA
may be an ideal bone repair material.15 For
example, Kubasiewicz et al.16 created 5 mm
calvaria bone defects in rats and used nano-
HA to repair. Histological analysis and
micro-CT evaluation showed that 34.2-
44.4% new bone was formed after 8 weeks,
whereas only 13.0% in empty control
group.

β-TCP, a good osteoconductive materi-
al, was reported to have similar effects to
inorganic bovine bone (Bio-Oss, Geistlich
Pharma, Wolhusen, Switzerland) in critical-
size defect repair of rats.17 For patients with
tibial plateau fractures, a long-term study
showed that new bone was formed around
β-TCP with good functional recovery,
which meant that β-TCP was an effective
material in tibial plateau fracture treat-
ments.18

BCP ceramic, a mixture of HA and TCP,
has been widely used in clinical. It is report-
ed that the BCP might be a feasible alterna-
tive to autografts.19-23 In the surgical man-
agement of scoliosis, the correction was
maintained similarly in BCP and autografts
groups, but BCP groups had lower blood
loss and free postoperative local complica-
tions.20 And in another study, BCP could
achieve equivalent fusion rates to autograft
in rabbit lumbar arthrodesis models.21 In
addition, Fellah et al.23 compared the
osteogenicity of BCP granules with auto-
graft, the results of which showed that the
BCP had better osteogenic property and sta-
bility in critical-sized bone defect repair.

Bioactive glasses are biodegradable in
physiological conditions. They can release
ions, such as Na+ and Ca2+, to give rise to
new bone regeneration with mechanically
strong bond to the surfaces of implanted.24

They have osteoconductivity, and can bond
firmly both with natural bones and soft tis-
sues. However, high brittleness limits their
applications to repair load-bearing bones.25

So, it is pressing to optimize bioactive
glasses by innovative scaffold design and
processing.

Metals and their alloys
As early as last century, due to high

mechanical strength, metals and their alloys
have been widely used for load-bearing
applications in bone repair, including bone
pins, plates, screws, knee or hip prostheses
and dental implants, etc.26 Alloys, which
generally perform better than pure metals,
are more commonly used. Stainless steel,
Co-based alloys and Ti-based alloys are the
three main types for bone repair.

With low cost and good processibility,
stainless steel, such as 316L stainless steel,

is still widely used for implant devices
today. However, many studies had shown
that the stainless steel often underwent cor-
rosion failure in the body27 or in simulated
body fluids,28 especially with the existence
of Cl-.29 As a matter of fact, stainless steels
are mostly used for temporary implant
devices.26 Co-based alloys, like Co-Cr and
Co-Ni, have been made for hip joint pros-
theses or other devices with fine-
structures.26 They display high fatigue
strength and wear resistance. It was report-
ed that Co-based alloys had better corrosion
resistance compared to others.30 However, it
was reported that in long period implanta-
tions, a high amount of released Cr and Ni
ions might lead to negative toxic effects31 or
allergic responses,32 etc. Moreover, Ti is a
suitable option for bone repair with superior
biocompatibility, low density (4.5g/cm3),
good corrosion resistance, low elastic mod-
ulus, and non-toxic even in large doses.29

Researches showed that Ti and Ti-based
alloys could make good physical connec-
tions with the host bone30 and had been
widely used in clinical, such as total hip
replacements and craniofacial implants.26

However, there are some common problems
of metals and their alloys, such as the stress
shielding effect due to the mismatch
between elastic modulus of metal implants
and that of natural bone, corrosion and
fatigue fractures, inflammatory reactions,
and allergic reactions caused by the wear
debris or metal ions. One promising strate-
gy to achieve suitable elastic modulus is to
prepare porous metallic implants. It is also
needed to control the corrosion rate to avoid
metal-related toxicity by precise modifica-
tion and control of micro- and nano-struc-
tures.

Polymers
Polymers can be divided into natural

and synthetic ones. Natural materials
involve collagen, silk fibroin (SF), chitin
(or chitosan), hyaluronic acid, sodium algi-
nate, etc. Synthetics mainly include poly-
lactic acid (PLA), Polycaprolactone (PCL)
and polylactic acid-glycolic acid copolymer
(PLGA) and so on.

Collagen is the main organic compo-
nent in natural bone and serves as the tem-
plate for mineralization with specific struc-
tures and bioactivities. However, pure colla-
gen is unsuitable for direct applications due
to its poor mechanical strength and high
degradation rate. Fortunately, reports
showed that it could encapsulate the MSCs
as injectable microspheres for bone repair,33

or combine with bioceramics or other poly-
mers to further increase the mechanical and
biological properties.34

SF is a kind of natural biopolymer

obtained from spiders or silkworms silks.35

With satisfactory flexibility, extensibility
and tensile strength, it can be molded into
different kinds of forms.36 It can offer active
sites to aid mineralization or bond with
bioactive molecules to promote bone regen-
eration. It was reported that the electrospun
silk fibroin scaffolds could facilitate the
new bone formation in rat calvaria defect
models more significantly than PLA scaf-
folds.37 Moreover, the degradation rate of
silk fibroin could be controllable, ranging
from weeks to a year.38,39 So, SF is expected
to be widely applied to repair bone in the
phase of human trials soon.40 With varied
mechanical properties and processability,
PLA is widely used for bone repair in clini-
cal.41 Up to now, there are many types of
biodegradable PLA devices, such as screws,
plates and pins, which, unlike alloys, can
not only withstand bear-loading and trans-
fer stress to the damaged area to avoid stress
shielding effect over a period of time, but
also avoid a second surgical procedure to
remove. However, they have some weak-
nesses, such as poor hydrophilicity and
excessively rapid degradation rate, etc.
Moreover, the accumulation of the degrada-
tion product, lactic acid, in vivo might lead
to a too low local pH, which could cause
inflammatory reaction42 or even osteoly-
sis.43,44 Therefore, to neutralize the acidity
or to modify properties, PLA was often
composite with other fillers, such as HA,
chitosan.45

In short, both natural and synthetic
materials have their own advantages and
disadvantages. For example, on the one
hand, most natural ones have low immuno-
genicity, no cytotoxicity, good biocompati-
bility and bioactivity. Some of those have
high mechanical properties, osteoconduc-
tivity or osteoinductivity. Besides, the struc-
tures of some natural materials are similar
to those of the natural bone ECM. However,
some natural materials are difficult to obtain
or process,46 and sometimes the perform-
ance may vary with batches. Furthermore,
chemical or enzymatic treatment may dam-
age their functionality or even result in
inactivation. On the other hand, synthetics
have well-adjustable mechanical properties
and outstanding processability, which can
be easily modified into various shapes or to
mimic natural matrices. But some have poor
biocompatibility, too rapid or slow degrada-
tion rate, less integration with the surround-
ing tissue.

Composites
A single material often has inevitable

shortcomings, so people turn their attention
to the composites, which may combine the
positive functionalities of each component
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and compensate the disadvantages of the
individual or even have new properties that
are not available in either material used
alone.47

Polymers, ceramics and metals can be
used as matrixes or reinforcements for bone
repair composites to acquire better proper-
ties. For example, Li et al.48 prepared nano-
HA/collagen/PLLA composites reinforced
by chitin fibers, which had higher compres-
sive strength than nano-HA and were simi-
lar to natural bone in components with the
existence of the chitin fibers. The further
study in vivo showed that the composites
could repair 40 mm goat shank bone defect
successfully in 15 weeks, which is firstly
reported to show that the use of biomateri-
als repaired completely segmental bone
defects larger than 30 mm. 

In addition, Chen et al.49 prepared and
investigated the collagen-SF/HA nanocom-
posites, which had suitable structural prop-
erties, good biocompatibility in vitro and an
enhanced elastic modulus with the presence
of SF in comparison to collagen/HA com-
posites. In another study, Zhang et al. devel-
oped small intestinal submucosa/poly-
methyl methacrylate (SIS/PMMA) compos-
ites for vertebral repair in rats. With a high-
er porosity, decreased stiffness and greater
osteoinductivity, they could enhance the
adhesion, proliferation and osteogenic dif-
ferentiation of MC3T3-E1 cells and
BMSCs compared to PMMA. And further
study indicated that these composites can
greatly enhanced osteointegration and bone
regeneration in vertebral defect models.50 In
this system, PMMA serves as a basic mate-
rial with stiffness and formability, and the
bioactive SIS enhanced the biological per-
formance. Moreover, it was reported that
the PLGA/TCP porous scaffold with Mg
ions incorporated had good bioactivity and
enhanced mechanical properties. As the
released of Mg ions in this system raised the
activity of osteoblasts, this scaffold could
promote more new bone formation than
PLGA/TCP scaffold in 15 mm radius
defects of rabbits.51

Carbon nanomaterials
With excellent mechanical properties

and biocompatibility, carbon materials,
especially carbon nanotubes (CNTS) and
grapheme, have attracted more and more
attention.

CNTs are cylindrical nanostructures and
have extraordinary properties, like good
tensile strength, high aspect ratio52 and good
biocompatibility in vivo.53,54 Generally, they
are often used as reinforcing nanofillers in
bone repair composites. It was reported that
the stiffness of CNT-ploymer composites
could be increased by 7 times.52 Another

research showed that the HA-CNTs com-
posite had considerable improvement in
fracture toughness and flexural strength
over pure HA, and the toughness of this
composite was close to that of human bone.
Further study proved that it could enhance
new bone formation with strong interac-
tions and high interfacial strength with the
host bone in rabbit models.55 Though some
studies showed that carbon nanotubes were
poor in hydrophilicity and easy to be
agglomerated, they could be functional-
ized56 or modified on the surface to remedy
the weaknesses. For example, Venkatesan et
al.57 fabricated chitosan-MWNTs compos-
ites for bone repair. This bicomponent sys-
tem had increased porosity and could
enhance cells proliferation and ALP expres-
sion than chitosan scaffold. It was also
demonstrated that after carboxyl-function-
alization, the MWNTs were uniformly dis-
tributed with the chemical interactions
formed with chitosan. Besides, it had been
reported that the specific treated multi-
walled carbon nanotubes (MWNTs) could
absorb bone-formed related proteins to pro-
mote stem cells differentiate into
osteoblasts.58,59

Another promising carbon nanomateri-
al, grapheme, is an allotrope of carbon with
a single atomic layer of six-atom rings net-
work, which has many unusual properties,
such as large specific surface area,60 distin-
guished electrical conductivity and mechan-
ical properties.61 Many studies showed that
grapheme had potential good biological
property and could improve the adhesion,
proliferation and differentiation of

osteoblasts,62 which indicated that it had
marvelous potential in bone repair.
However, there are still some shortcomings
of graphene, such as the long-term toxivcity
and poor biodegradability.63 So, its applica-
tions in bone repair still remain studies in
vitro or animal experiments stages.

Smart hydrogels
Although the concept of hydrogels

appeared at the end of the 19th century, the
word smart was not introduced until 1948
by Kuhn.64 The smart hydrogels can not
only present specific structures and func-
tions by one or more stimuli, like tempera-
tures, pH, electric, magnetic fields, light
and biomolecule, but also be customized for
different targets, such as chronic inflamma-
tion treatment, cancer therapy and bone
repair.65 Nowadays, smart hydrogels have
become research hotspots in bone repair.
The number of publications in the Science
Direct database about smart hydrogels and
smart hydrogels for bone repair since 1998
has had a booming growth (Figure 1).

It has been showed that the release rate
of the bioactive proteins, cells or drugs
loaded in smart hydrogels with three-
dimensional structures could be controlled
by different external stimuli,66,67 thereby
providing potentials as intelligent drug
delivery systems in a controlled manner for
bone repair applications. Papathanasiou et
al.68 prepared the programmable and
responsive silica-based hydrogels, with bis-
phosphonates (BPs) loaded, for osteoporo-
sis therapy. The release rate of BPs could be
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Figure 1. The number of publications about smart hydrogels or smart hydrogels for bone
repair in Science Direct database per year. (Compiled from a literature search in Science
Direct database in December 2018).
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fine-tuned by several factors, like cations,
pH, temperature and side-chains of BPs, to
meet the patient’s requirements. For exam-
ple, the change of pH could reinforce or
weaken the binding strength of hydrogen
bonds in the hydrogels to affect the gelation
to control the release rate of BPs. Moreover,
injectable smart hydrogels can perfectly fit
defects of different sizes and irregular
shapes with homogenous distribution, min-
imal invasion and low risk of infection.
They can perform good integrations with
host bone and enhance new bone formation.
For example, one kind of reported
injectable acellular bone matrix/PEG–PCL–
PEG hydrogels were bioactive and ther-
mosensitive, which could be molded into
the shape of the defects perfectly and gel in
a few minutes at body temperature in cra-
nial defects of rabbits. The X-ray examina-
tion, micro-CT images and histological
analysis all proved that these hydrogels
could be effective in cranial defects repair,
and the density of new formed bone was
approximate to that of the host cranial bone
after 20 weeks.69 Furthermore, it is well
known that dynamically tunable cell culture
platforms are similar to natural cell
microenvironments. Based on their stimuli-
responsiveness to pH, temperature, radia-
tion, etc., smart hydrogels can provide vari-
ous dynamic chemical, physical, and
mechano-structural cues to the adhered
cells in the platforms, where the fundamen-
tal biological processes can be deeply
understood, and the interactions between
implants and cells can be well simulated.70

The smart hydrogels in these platforms can
present different mechanical properties to
simulate the in vivo ECM to control cellular
processes. For example, Yang et al. devel-
oped a phototunable PEG hydrogels with
tunable stiffness to stimulate the highly
dynamic ECM, which could be used to
investigate the response of hMSCs to the
stiffness of the substrate and whether the
MSCs had the memory of the previous
mechanical signals.71 With significant
advantages, smart hydrogels are commonly
used in bone repair and delivery system.72

But, it is still needed to consider about con-
trolled biodegradability and the mainte-
nance of mechanical properties after
implantation.

Metal ions
Natural bone microenvironment con-

tains a variety of bioactive metal ions, such
as Strontium, Zinc and Magnesium ions,
which often exist in many surrounding
macromolecules, like enzymes and nucleic
acids, etc. It has been reported that some
metal ions could induce bone related gene

expression and bone metabolism via signal
transduction to enhancing osteogenic differ-
entiation of cells, osteogenesis and angio-
genesis.73 Therefore, with the adoption of
some specific metal ions, bone repair mate-
rials have potentials to exhibit better per-
formances. Most of the Strontium (Sr) ele-
ment in the human body exists in the skele-
tal system,74 which has been proved not
only to stimulate new bone formation,75 but
also to inhibit bone resorption.76 For exam-
ple, it was reported that the addition of Sr
into HA could improve the adhesion, viabil-
ity and ALP activity of MG-63 cells, indi-
cating that the SrHA composites had good
potential to promote bone growth.77

Moreover, Prabha et al. prepared the poly-
(ε) caprolactone-laponite-strontium ranelate
(PLS3) scaffold for bone tissue engineering,
which had shown that the PLS3 was
osteoinductive and could support the prolif-
eration and osteogenic differentiation of
hMSCs.78 After seeded with hMSCs, it
could promote ectopic bone formation with
vascularization in immunocompromised
mice, and the strontium ranelate in this sys-
tem could enhance the density of the new
formed bone at the implant site.

Magnesium (Mg) ions are bio-safe both
in vitro and in vivo, and can be promptly
diluted and excreted.79 They exist in natural
bone and can stimulate bones growth80-82 or
remodeling.83 Mg ions perform as cofactors
in various bone-related enzymatic reac-
tions, such as protein and nucleic acid syn-
thesis, energy metabolism and vitamin D
metabolism.84 As mentioned above,51

PLGA/TCP porous scaffold incorporated
with Mg ions could promote osteogenesis.
Another study showed that the presence of
Mg in TCP scaffolds could facilitate angio-
genesis in femoral defect of rat models.85

Zinc (Zn) ions are also necessary in pro-
tein synthesis, cell proliferation and DNA
synthesis, which can stimulate bone forma-
tion and inhibit bone resorption. For exam-
ple, Bhattacharjee et al.86 doped Zn ions in
HA to improve its bioactivity. After the
implantation in femur bone of rabbits for
two months, the percentage of new bone
formation in Zn-HA group was significantly
higher than that of pure HA group.
Histological studies showed that well-
development of Haversian system and
Volkmann’s canal was formed in the regen-
erated bone. Moreover, mechanical push-
out testing demonstrated stronger interfacial
strength between the Zn-doped implants
and host bone. Another study showed that in
Zn-doped TCP cement, the low concentra-
tion of Zn2+ could promote the proliferation
and ALP activity of rat MSCs to enhance
bone formation.87 Furthermore, the Zn2+

could offer anti-bacterial property to TCP to

prevent clinical infections. However, high
concentration of Zn2+ might restrict cell
growth,88,89 so it is necessary to control the
amount of Zn2+ in the composites and their
release rate.

In fact, the current use of metal ions in
bone repair materials mostly stays in the
stage of animal experiments only with few
clinical results, so further studies on the
doping methods and precise release of
metal ions are necessary.

Natural biomaterials 
With specific advantages, such as low

immunogenicity and similar structure to
that in the human body, natural biomaterials
for bone repair have attracted much atten-
tion. Among all, those derived from aquatic
organisms, like corals and fish collagens,
with a wide range of source, good bioactiv-
ity and osteogenic activity, have good
potential for bone repair. As early as the
1980s, corals had been investigated and
used as bone repair materials.90 Nowadays,
there are some effective commercially
available products in clinical, like Pro
Osteon™ and Biocoral®.91 The structures
of corals were networks with interconnect-
ed channels and pores, which were highly
similar to those of cancellous bones and
could allow for the ingrowth of capillaries.92

Besides, it had been proved that hMSCs and
osteoblasts could adhere, proliferate or dif-
ferentiate on the coral scaffolds with high
DNA content and ALP activity.93,94

Nevertheless, in some other studies, corals
had relatively low resorption and fusion rate
in cervical arthrodesis,95-97 and poor bone
ingrowth at the defects of iliac crest,98

which indicated that the experimental
results were inconsistent and more in-depth
investigations into their long-term perform-
ances were needed. Moreover, the overex-
ploitation and environmental changes had
put them in an endangered position.94

Meanwhile, corals might contain some
toxic elements due to the environment pol-
lution.99 So, it is necessary to launch better
protection measures and detailed examina-
tions into corals before considering the
application to bone repair, or try to cultivate
artificial corals. Due to its wide range of
sources, low cost and minimal disease
transmission,100 fish collagen is considered
as an appropriate alternative to mammal
collagen for bone repair. It was reported that
the bioactive tilapia collagen could increase
the expression of ALP, osteocalcin and
osteopontin in pre-osteoblasts in vitro.101

Moreover, Matsumoto et al. demonstrated
that the flexible and soft tilapia collagen
could induce the adhesion and the early
osteoblastic differentiation of hMSCs better
than the hard porcine collagen. And the
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aligned tilapia collagen fibrils could induce
cell polarization and facilitate osteogenesis
while the randomly arranged porcine colla-
gen didn’t have similar functions.102

However, it was showed that fish collagen
might be allergens for some people.103

Therefore, more hyposensitization and
detailed safety tests of fish collagen should
be taken into consideration.

Bioactive mechanism of the
materials

Generally, there had been many studies
on the approaches for designing the bone
repair materials and the expression of bone-
related gene or proteins, but the intrinsic
bioactive mechanisms were often
ignored.104,105 Fortunately, more and more
recent studies have begun to focus on their
bioactive mechanisms. Nowadays, it has
been shown that bone repair materials
exhibit their functions by affecting signal-
ing pathways of osteogenic-related cells,
such as Notch, Wnt and BMP106 (Figure 2).
For example, Jung et al. reported that the
silk fibroins could up-regulate the expres-
sion of ALP and Runx2 mRNA by inhibit-
ing Notch signaling pathway of bone mar-
row cells to regulate osteogenesis.107

Moreover, studies showed that, by signifi-
cantly up-regulating the activity of BMP2108

and Wnt109 signaling pathways of MSCs,
the β-TCP could stimulate the bone regener-
ation. In another study, Zhang et al. showed
that Mg2+ could increase the expression
level of Runx2 and ALP to significantly
improve the osteogenic activity via
TRPM7/PI3K signaling pathway of human
osteoblast cells.110 Besides, some compos-
ites have been shown to promote bone
repair with the similar mechanism. For
example, Liu et al. had demonstrated that
the nano-HA/chitosan scaffold could acti-
vate the integrin-BMP/Smad signaling
pathway to up-regulate the mRNA expres-
sion level of the BMP-2/4, Runx2 and ALP
to induce the osteogenic differentiation of
mBMSCs.111 Meanwhile, the physical and
chemical properties of materials have
effects on signaling pathways. For example,
studies had proven that the surface
micro/nanotopography of materials could
influence the Hedgehog-Gli1,112 FAK-
ERK1/2,113 ILK/ERK1/2 and ILK/p38114

signaling pathways to regulate cell fates. In
addition, it had been found that the increas-
ing matrix stiffness could activate the Wnt
signaling pathway to promote the prolifera-
tion and osteogenic differentiation of dental
pulp stem cells,115 or could up-regulate the
expression of macrophage migration
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Figure 2. The bone repair materials can promote cell proliferation and differentiation
through affecting the Notch, Wnt and BMP-2 signaling pathways to stimulate the expres-
sion of BMP-2/4, Runx2 or ALP, etc. in osteogenic-related cells to promote new bone for-
mation.

Figure 3. The porous scaffold can adsorb different proteins in vitro to promote cell adhe-
sion and proliferation (the walls of pores are showed in grey).
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inhibitory factor (MMIF) to activate the
AKT/YAP/RUNX2 signaling pathway to
facilitate osteogenic differentiation of
hMSCs.116 Furthermore, the porous nano-
materials could provide adsorption sites to
gather and accumulate a large amount of
bone-related proteins from the culture
medium to promote cell adhesion and pro-
liferation (Figure 3).117-119 Moreover, the
recruitment of endogenous MSCs in vivo is
critical to bone regeneration. It had been
hypothesized that MSCs might migrate to
the targeted sites due to the participation of
chemokines, growth factors, or other chem-
ical or physical cues from bone repair mate-
rials. For example, it was reported that the
bFGF-loaded acellular dermal matrix
(ADM) could recruit a plenty of MSCs to
the implant sites and promote their prolifer-
ation to a sufficient amount to facilitate
bone regeneration.120 In another study, Shih
et al. showed that the PEGDA-co-A6ACA
hydrogels could promote the osteogenic dif-
ferentiation of MSCs, ES and even iPSCs
without the addition of growth factors. After
the subcutaneous implantation in the spine
of rats, it could recruit endogenous progen-
itor cells for bone formation by the simula-
tion of the bone environment to assist spinal
fusion.121,122 In addition, Song et al. implant-
ed the osteoinductive microporous BCP in
dogs’ dorsal muscles and observed that the
osteoprogenitor cells and BMSCs were
homed from the bone marrow to the implant
site through blood circulation to induce
ectopic bone formation.123

Updated investigations of bone
repair materials

Nowadays, bone repair materials have
been continually optimized to improve their
biocompatibility, bioactivity and osteogenic
capability, and to overcome the shortcom-
ings. Furthermore, the immunoregulation
effect of materials was also underlined in
some studies.

Function improvement
Recently, with the development of man-

ufacturing technology and the in-depth
researches, more and more multifunctional
bone repair materials have appeared. On the
one hand, these materials not only have the
function of the conventional materials, but
only have suitable degradation rate, antibac-
terial property and the function to promote
vascularization, etc. On the other hand,
these conventional functions, bioactivity
and osteogenesis ability, etc. had been fur-
ther improved.

Multi-function
Much attention has been paid to the

multifunctionality of bone repair materials
to obtain better repair efficiency. For exam-
ple, in a recent study of Li et al., with the
reinforcement of silica nanoparticles (SNs),
the biodegradable and bioactive poly (cit-
rate-siloxane) had the enhanced photolumi-
nescent capacity for imaging application.
The further in vitro experiment showed that
the osteoblasts (MC3T3-E1) had improved
attachment and proliferation on this materi-
al. Therefore, it was indicated that this
material had the potential to realize simulta-
neous bone regeneration and fluorescence
imaging.124 In another study, with Co ions
incorporated, the bioactive glass-collagen-
glycosaminoglycan scaffold could support
osteogenesis and promote the expression of
VEGF, indicating that this scaffold has both
pro-angiogenic and pro-osteogenic capabil-
ities for bone repair.125

Bioactivity improvement 
In order to further improve the bioactiv-

ity and osteogenesis ability of materials,
bioactive molecules, like peptides and
growth factors, have been adopted into the
bone repair materials.

Recently, osteogenesis-related polypep-
tides have been widely used in bone repair
materials due to their outstanding
osteogenic ability, low cost, stability and
minimal tumor-related side effects.126

Generally, these polypeptides can be bond-
ed to the surface of materials by either non-
covalent or covalent bonds. But the cova-
lent combination can effectively increase
the interactions between the polypeptides
and materials, prolong the duration of
polypeptides action and make the function-
alized surfaces more stable than the non-
covalent one.127 It was reported that, many
polypeptides could be added in bone repair
materials to mimic native bone ECM.
Among them, Arg-Gly-Asp (RGD)
polypeptide, which could be found in
fibronectin and other molecules in ECM,
could be coated on bone repair materials to
enhance the adhesion and differentiation of
osteoprogenitor cells.128

Loading growth factors on bone repair
materials is another common method to
improve the osteogenesis ability. For exam-
ple, Zhao et al. immobilized BMP-2 on the
surfaces of PLGA/HA fibrous scaffolds to
increase the expression of osteogenesis-
related genes and up-regulate the activity of
ALP in vitro.129 In another study, Kuttappan
et al. stated that the sustained local delivery
of multiple growth factors might be a poten-
tial approach for bone repair.130 They devel-
oped PLLA-nanoHA-gelatin composite
scaffolds with dual growth factor (VEGF-

BMP-2 or FGF-2-BMP-2) loaded, by dis-
solving these growth factors with specific
ratio in phosphate buffered saline (PBS, pH
7.4). Further in vivo study showed that, dur-
ing 24 h, about 23 % of BMP-2, 42% of
FGF-2 and 85% of VEGF were released
steadily. VEGF could be released totally
within 7 days while BMP-2 and FGF-2
could be released till 20 days. Increased
new vasculature in the scaffolds and new
bone growing from the peripheral region
towards the mid region of the defect were
observed in calvarial defects of rats, the
results of which demonstrated that these
scaffolds could effectively promote vascu-
larisation and bone regeneration.

Immune response
As foreign bodies, bone repair materials

can inevitably cause immune responses
after the implantation. The interactions
between materials and the surrounding
immune environment should be considered,
as well as the assessment of the osteogenic
capacity of bone repair materials. For exam-
ple, in a research of Chen et al., hMSCs and
macrophages were cultured alone or togeth-
er on cobalt incorporated β-tricalcium phos-
phate (CCP). When hMSCs were cultured
alone, the CCP had the effect to promote
their osteogenic differentiation. But this
effect was reduced with the presence of
macrophages. After the implantation in
femur of rats, CCP was coupled with
fibrous encapsulation rather than promoted
new bone regeneration. The research
showed that the CCP could shift
macrophages to an M1 phenotype and cause
enhanced inflammation. Therefore, the
excessive inflammation impeded the
osteogenic differentiation.131

Furthermore, other studies reported that
macrophages played key roles in the
recruitment and differentiation of MSCs. It
was a common understanding that the coor-
dinated cross-talk between immunocyte and
bone related cells, especially macrophages
and MSCs, could contribute to successful
bone healing.132

Moreover, it has been shown that materi-
als with different surface properties might
induce diverse types or extent of immune
responses.133 For example, the surface rough-
ness and hydrophilicity could influence the
interaction between immune cells and materi-
als. Hotchkiss et al. showed that, by increas-
ing the roughness and surface wettability, tita-
nium implant could polarize the adaptive
immune response towards a Th2, pro-wound
healing phenotype, to lead to a faster resolu-
tion of inflammation, by which, this implant
could recruit more MSCs to the implant site
with the presence of macrophages.134

                             Review

Non
-co

mmerc
ial

 us
e o

nly



                                        [BioMaterials Advances 2019; 2:63]                                                            [page 7]

Conclusions
Although rapid developments on bone

repair materials, there has not been a mate-
rial that fully meets the ideal requirements,
especially for large bone defect repair. Most
materials remain in the in vitro or animal
experiments. With the advancement of sci-
ence and the improvement of people’s liv-
ing standards, the performance of bone
repair materials is undoubtedly facing high-
er requirements and challenges.

Firstly, it is needed to produce bone
repair materials that have multiple functions
or can simulate biological processes.
Materials are expected to accurately assist
the natural healing process via additional
functions. The treatment plan and the
implanted material should be different for
the bone defects caused by different rea-
sons. For example, i) for trauma and infec-
tion, the materials should have antibacterial
and anti-infective properties by adding chi-
tosan, silver ions or loading drugs; ii) For
bone tumor, after excision of the tumor, the
cancer cells left at the edge of the defects
will multiply and cause local recurrence.
The implanted bone repair material should
also have the ability to inactivate cancer
cells to prevent recurrence while promoting
bone regeneration; iii) For fractures due to
osteoporosis, it is better that the implanted
material can not only promote the homing
of osteoblasts and stimulate bone regenera-
tion in situ, but also release Ca2+ to increase
the calcium content and bone mineral densi-
ty of host bone, thereby reducing the rate of
fracture recurrence.

Secondly, by structural adjustment,
bone repair materials can be effectively
combined with bioactive molecules and
achieve stable and precise release for a suf-
ficient period of time. It is a viable way to
wrap or physically or chemically bind
porous microspheres with bioactive mole-
cules inside with bone repair materials.
Another promising method for precise
release is preparing multilayered scaffolds
with different types or dose of growth fac-
tor. Besides, the materials may have the
structure to adsorb specific growth factors.
After implanted in the body, they can accu-
mulate growth factors, and then release
them gradually. Moreover, efforts to design
materials with specific structure to stimu-
late related cells to express osteogenic pro-
teins, and then adsorb the proteins on their
surface to further bring positive effects to
other attached cells, have been another
promising research direction for bone repair
materials. 

Thirdly, in the wake of development in
high technology, the approaches of process-

ing and preparing materials are more diver-
sified. Advance techniques, such as 3D
printing, and even the emerging 4D print-
ing,135 can manufacture materials with more
complex structures to satisfy precious
requirements. 3D CT scan image can cap-
ture the sophisticated details of the defects
accurately. By the conversion of 3D CT
scan image into mathematical model, bio-
mimetic customized implants can be manu-
factured accurately through 3D printing.
These techniques make it promising to real-
ize the personalized medicine.

Fourthly, after implanted, materials are
in a dynamic biomechanical environment
instead of static. However, most of the cur-
rent in vitro studies often ignore the influ-
ence of biomechanics. For example,
although many bone bioreactors have been
developed in vitro, they still have limita-
tions and cannot fully simulate the complex
environment of living organ. In many cases,
the rates of material degradation in vivo and
in vitro are different because of biomechan-
ical environment. Thus, more attention
should be paid on the effect of mechanics
during the investigations into the degrada-
tion of materials in simulated body fluids or
co-culture with cells. The in vivo mechani-
cal environment can be simulated by adding
a near physiological load. It is necessary to
systematically study the relationship
between material structures, mechanical
properties and degradation in biomechani-
cal environment to optimize bone repair
materials. Moreover, at present, most of the
results obtained in animal experiments may
not be repeated in clinical.136 On the one
hand, a material should be tested from small
animals to large ones systematically.
Generally, small animals, such as rats and
rabbits, have fast bone turnover rates and
low cost, which can be used to assess the
performances of materials initially. The
advantage of large animals, such as goats
and pigs, is that their physiology and bio-
mechanical properties are closer to those of
human being. So, experiments from small
to large animals can help to find the rules of
the repair process. Based on the comparison
of the results obtained from small animals
with those from large animals, the perform-
ances in clinical can be predicted. On the
other hand, at present, there is hardly clini-
cal standard to evaluate the degree of bone
regeneration in animal experiments and
clinical. So, a well recognized material
should be selected first. Then, systematical
and comprehensive investigations on this
material both in animal models and in clin-
ical are performed. Based on the results, an
industry standard can be established to eval-
uate performances of other materials in the
subsequent studies.

Fifthly, it is well know that vasculariza-
tion, which is essential for the transport of
nutrients and the recruitment of cells of the
implant materials, is a prerequisite for bone
healing,137 especially for large bone defect
repair. Although there are a lot of related
researches, some of which took pore size,138

vascular-related growth factors and cell co-
culture,139 as well as hypoxia-induced sig-
naling140 into account. Cell sheet technolo-
gy, pre-patterning and 3D printing strategies
are also worth trying,141 deeper understand-
ing and study of the interactions between
materials and endotheliocyte or related cells
are necessary. Furthermore, it may be an
effective solution to prepare bone repair
containing some specific tubes loaded with
vascular-associated growth factors.

Finally, bone repair materials with spe-
cific immunomodulatory functions should
be another important future development
direction.131 Immune cells play important
roles in regulating skeletal dynamics. After
materials are implanted, the first cells that
they encounter are immune types. The reg-
ulation of the immune cell response by the
material determines to some content
whether bone regeneration can be promot-
ed. At present, it is necessary to launch a
large number of systematical investigations
into the effects of the structure, composition
and surface properties, etc. of bone repair
materials on the differentiation of immune
cells.

In short, the preparation of suitable
bone repair materials is required to consider
the multiple effects of various factors.
Every factor is crucial and complements
each other. It is necessary to advance long-
term, cross-discipline collaborations.
Further studies on the structure and proper-
ties of the materials, the mechanisms of
angiogenesis, immune response and bone
regeneration are imperative. With the above
comprehensive developments, it should be
much easier to achieve the satisfactory bone
repair materials to meet the requirements of
different patients for precision medicine.
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